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Abstract 

“Grid” computing has emerged as an important new field, distinguished from conventional 
distributed computing by its focus on large-scale resource sharing, innovative applications, and, 
in some cases, high-performance orientation.  In this article, we define this new field.  First, we 
review the “Grid problem,” which we define as flexible, secure, coordinated resource sharing 
among dynamic collections of individuals, institutions, and resources—what we refer to as virtual 
organizations.  In such settings, we encounter unique authentication, authorization, resource 
access, resource discovery, and other challenges.  It is this class of problem that is addressed by 
Grid technologies.  Next, we present an extensible and open Grid architecture, in which 
protocols, services, application programming interfaces, and software development kits are 
categorized according to their roles in enabling resource sharing.  We describe requirements that 
we believe any such mechanisms must satisfy and we discuss the importance of defining a 
compact set of intergrid protocols to enable interoperability among different Grid systems.  
Finally, we discuss how Grid technologies relate to other contemporary technologies, including 
enterprise integration, application service provider, storage service provider, and peer-to-peer 
computing.  We maintain that Grid concepts and technologies complement and have much to 
contribute to these other approaches.  

1 Introduction 
The term “the Grid” was coined in the mid1990s to denote a proposed distributed computing 
infrastructure for advanced science and engineering [34].  Considerable progress has since been 
made on the construction of such an infrastructure (e.g., [10, 16, 46, 59]), but the term “Grid” has 
also been conflated, at least in popular perception, to embrace everything from advanced 
networking to artificial intelligence.  One might wonder whether the term has any real substance 
and meaning.  Is there really a distinct “Grid problem” and hence a need for new “Grid 
technologies”?  If so, what is the nature of these technologies, and what is their domain of 
applicability?  While numerous groups have interest in Grid concepts and share, to a significant 
extent, a common vision of Grid architecture, we do not see consensus on the answers to these 
questions. 

Our purpose in this article is to argue that the Grid concept is indeed motivated by a real and 
specific problem and that there is an emerging, well-defined Grid technology base that addresses 
significant aspects of this problem. In the process, we develop a detailed architecture and 
roadmap for current and future Grid technologies.  Furthermore, we assert that while Grid 
technologies are currently distinct from other major technology trends, such as Internet, 
enterprise, distributed, and peer-to-peer computing, these other trends can benefit significantly 
from growing into the problem space addressed by Grid technologies.   
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The real and specific problem that underlies the Grid concept is coordinated resource sharing 
and problem solving in dynamic, multi-institutional virtual organizations.  The sharing that we 
are concerned with is not primarily file exchange but rather direct access to computers, software, 
data, and other resources, as is required by a range of collaborative problem-solving and resource-
brokering strategies emerging in industry, science, and engineering.  This sharing is, necessarily, 
highly controlled, with resource providers and consumers defining clearly and carefully just what 
is shared, who is allowed to share, and the conditions under which sharing occurs.  A set of 
individuals and/or institutions defined by such sharing rules form what we call a virtual 
organization (VO). 

The following are examples of VOs: the application service providers, storage service providers, 
cycle providers, and consultants engaged by a car manufacturer to perform scenario evaluation 
during planning for a new factory; members of an industrial consortium bidding on a new 
aircraft; a crisis management team and the databases and simulation systems that they use to plan 
a response to an emergency situation; and members of a large, international, multiyear high-
energy physics collaboration.  Each of these examples represents an approach to computing and 
problem solving based on collaboration in computation- and data-rich environments. 

As these examples show, VOs vary tremendously in their purpose, scope, size, duration, 
structure, community, and sociology.  Nevertheless, careful study of underlying technology 
requirements leads us to identify a broad set of common concerns and requirements.  In 
particular, we see a need for highly flexible sharing relationships, ranging from client-server to 
peer-to-peer; for sophisticated and precise levels of control over how shared resources are used, 
including fine-grained and multi-stakeholder access control, delegation, and application of local 
and global policies; for sharing of varied resources, ranging from programs, files, and data to 
computers, sensors, and networks; and for diverse usage modes, ranging from single user to 
multi-user and from performance sensitive to cost-sensitive and hence embracing issues of quality 
of service, scheduling, co-allocation, and accounting. 

Current distributed computing technologies do not address the concerns and requirements just 
listed.  For example, current Internet technologies address communication and information 
exchange among computers but do not provide integrated approaches to the coordinated use of 
resources at multiple sites for computation.  Business-to-business exchanges [57] focus on 
information sharing (often via centralized servers).  So do virtual enterprise technologies, 
although here sharing may eventually extend to applications and physical devices (e.g., [8]).  
Enterprise distributed computing technologies such as CORBA and Enterprise Java enable 
resource sharing within a single organization.  The Open Group’s Distributed Computing 
Environment (DCE) supports secure resource sharing across sites, but most VOs would find it too 
burdensome and inflexible.  Storage service providers (SSPs) and application service providers 
(ASPs) allow organizations to outsource storage and computing requirements to other parties, but 
only in constrained ways: for example, SSP resources are typically linked to a customer via a 
virtual private network (VPN).  Emerging “Distributed computing” companies seek to harness 
idle computers on an international scale [31] but, to date, support only highly centralized access 
to those resources.  In summary, current technology either does not accommodate the range of 
resource types or does not provide the flexibility and control on sharing relationships needed to 
establish VOs. 

It is here that Grid technologies enter the picture.  Over the past five years, research and 
development efforts within the Grid community have produced protocols, services, and tools that 
address precisely the challenges that arise when we seek to build scalable VOs.  These 
technologies include security solutions that support management of credentials and policies when 
computations span multiple institutions; resource management protocols and services that support 
secure remote access to computing and data resources and the co-allocation of multiple resources; 
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information query protocols and services that provide configuration and status information about 
resources, organizations, and services; and data management services that locate and transport 
datasets between storage systems and applications.   

Because of their focus on dynamic, cross-organizational sharing, Grid technologies complement 
rather than compete with existing distributed computing technologies.   For example, enterprise 
distributed computing systems can use Grid technologies to achieve resource sharing across 
institutional boundaries; in the ASP/SSP space, Grid technologies can be used to establish 
dynamic markets for computing and storage resources, hence overcoming the limitations of 
current static configurations.  We discuss the relationship between Grids and these technologies 
in more detail below. 

In the rest of this article, we expand upon each of these points in turn.  Our objectives are to (1) 
clarify the nature of VOs and Grid computing for those unfamiliar with the area; (2) contribute to 
the emergence of Grid computing as a discipline by establishing a standard vocabulary and 
defining an overall architectural framework; and (3) define clearly how Grid technologies relate 
to other technologies, explaining both why emerging technologies do not yet solve the Grid 
computing problem and how these technologies can benefit from Grid technologies. 

It is our belief that VOs have the potential to change dramatically the way we use computers to 
solve problems, much as the web has changed how we exchange information.  As the examples 
presented here illustrate, the need to engage in collaborative processes is fundamental to many 
diverse disciplines and activities: it is not limited to science, engineering and business activities.   
It is because of this broad applicability of VO concepts that Grid technology is important. 

2 The Emergence of Virtual Organizations 
Consider the following four scenarios: 

1. A company needing to reach a decision on the placement of a new factory invokes a 
sophisticated financial forecasting model from an ASP, providing it with access to 
appropriate proprietary historical data from a corporate database on storage systems 
operated by an SSP.  During the decision-making meeting, what-if scenarios are run 
collaboratively and interactively, even though the division heads participating in the 
decision are located in different cities.  The ASP itself contracts with a cycle provider for 
additional “oomph” during particularly demanding scenarios, requiring of course that 
cycles meet desired security and performance requirements. 

2. An industrial consortium formed to develop a feasibility study for a next-generation 
supersonic aircraft undertakes a highly accurate multidisciplinary simulation of the entire 
aircraft.  This simulation integrates proprietary software components developed by 
different participants, with each component operating on that participant’s computers and 
having access to appropriate design databases and other data made available to the 
consortium by its members. 

3. A crisis management team responds to a chemical spill by using local weather and soil 
models to estimate the spread of the spill, determining the impact based on population 
location as well as geographic features such as rivers and water supplies, creating a short-
term mitigation plan (perhaps based on chemical reaction models), and tasking 
emergency response personnel by planning and coordinating evacuation, notifying 
hospitals, and so forth. 

4. Thousands of physicists at hundreds of laboratories and universities worldwide come 
together to design, create, operate, and analyze the products of a major detector at CERN, 
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the European high energy physics laboratory.  During the analysis phase, they pool their 
computing, storage, and networking resources to create a “Data Grid” capable of 
analyzing petabytes of data [22, 44, 53]. 

These four examples differ in many respects: the number and type of participants, the types of 
activities, the duration and scale of the interaction, and the resources being shared.  But they also 
have much in common, as discussed in the following (see also Figure 1). 

In each case, a number of mutually distrustful participants with varying degrees of prior 
relationship (perhaps none at all) want to share resources in order to perform some task.  
Furthermore, sharing is about more than simply document exchange (as in “virtual enterprises” 
[18]): it can involve direct access to remote software, computers, data, sensors, and other 
resources.  For example, members of a consortium may provide access to specialized software 
and data and/or pool their computational resources. 

 

   
Figure 1: An actual organization can participate in one or more VOs by sharing some or all of its 
resources.  We show three actual organizations (the ovals), and two VOs: P, which links participants in an 
aerospace design consortium, and Q, which links colleagues who have agreed to share spare computing 
cycles, for example to run ray tracing computations.   The organization on the left participates in P, the one 
to the right participates in Q, and the third is a member of both P and Q.  The policies governing access to 
resources (summarized in “quotes”) vary according to the actual organizations, resources, and VOs 
involved.  

Resource sharing is conditional: each resource owner makes resources available, subject to 
constraints on when, where, and what can be done.  For example, a participant in VO P of Figure 
1 might allow VO partners to invoke their simulation service only for “simple” problems.  
Resource consumers may also place constraints on properties of the resources they are prepared 
to work with.  For example, a participant in VO Q might accept only pooled computational 
resources certified as “secure.”  The implementation of such constraints requires mechanisms for 
expressing policies, for establishing the identity of a consumer or resource (authentication), and 
for determining whether an operation is consistent with applicable sharing relationships 
(authorization). 

Sharing relationships can vary dynamically over time, in terms of the resources involved, the 
nature of the access permitted, and the participants to whom access is permitted.  And these 
relationships do not necessarily involve an explicitly named set of individuals, but rather may be 
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defined implicitly by the policies that govern access to resources.  For example, an organization 
might enable access by anyone who can demonstrate that they are a “customer” or a “student.”  

The dynamic nature of sharing relationships means that we require mechanisms for discovering 
and characterizing the nature of the relationships that exist at a particular point in time.  For 
example, a new participant joining VO Q must be able to determine what resources it is able to 
access, the “quality” of these resources, and the policies that govern access. 

Sharing relationships are often not simply client-server, but peer to peer: providers can be 
consumers, and sharing relationships can exist among any subset of participants.  Sharing 
relationships may be combined to coordinate use across many resources, each owned by different 
organizations.  For example, in VO Q, a computation started on one pooled computational 
resource may subsequently access data or initiate subcomputations elsewhere.  The ability to 
delegate authority in controlled ways becomes important in such situations, as do mechanisms for 
coordinating operations across multiple resources (e.g., coscheduling). 

The same resource may be used in different ways, depending on the restrictions placed on the 
sharing and the goal of the sharing.  For example, a computer may be used only to run a specific 
piece of software in one sharing arrangement, while it may provide generic compute cycles in 
another.  Because of the lack of a priori knowledge about how a resource may be used, 
performance metrics, expectations, and limitations (i.e., quality of service) may be part of the 
conditions placed on resource sharing or usage. 

These characteristics and requirements define what we term a virtual organization, a concept that 
we believe is becoming fundamental to much of modern computing.  VOs enable disparate 
groups of organizations and/or individuals to share resources in a controlled fashion, so that 
members may collaborate to achieve a shared goal.  

3 The Nature of Grid Architecture 
The establishment, management, and exploitation of dynamic, cross-organizational VO sharing 
relationships require new technology.  We structure our discussion of this technology in terms of 
a Grid architecture that identifies fundamental system components, specifies the purpose and 
function of these components, and indicates how these components interact with one another. 

In defining a Grid architecture, we start from the perspective that effective VO operation requires 
that we be able to establish sharing relationships among any potential participants.  
Interoperability is thus the central issue to be addressed.  In a networked environment, 
interoperability means common protocols.  Hence, our Grid architecture is first and foremost a 
protocol architecture, with protocols defining the basic mechanisms by which VO users and 
resources negotiate, establish, manage, and exploit sharing relationships.  A standards-based open 
architecture facilitates extensibility, interoperability, portability, and code sharing; standard 
protocols make it easy to define standard services that provide enhanced capabilities.  We can 
also construct Application Programming Interfaces and Software Development Kits (see 
Appendix for definitions) to provide the programming abstractions required to create a usable 
Grid.  Together, this technology and architecture constitute what is often termed middleware 
(“the services needed to support a common set of applications in a distributed network 
environment” [3]), although we avoid that term here due to its vagueness.   We discuss each of 
these points in the following. 

Why is interoperability such a fundamental concern?  At issue is our need to ensure that sharing 
relationships can be initiated among arbitrary parties, accommodating new participants 
dynamically, across different platforms, languages, and programming environments.  In this 
context, mechanisms serve little purpose if they are not defined and implemented so as to be 
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interoperable across organizational boundaries, operational policies, and resource types.  Without 
interoperability, VO applications and participants are forced to enter into bilateral sharing 
arrangements, as there is no assurance that the mechanisms used between any two parties will 
extend to any other parties.  Without such assurance, dynamic VO formation is all but impossible, 
and the types of VOs that can be formed are severely limited.  Just as the Web revolutionized 
information sharing by providing a universal protocol and syntax (HTTP and HTML) for 
information exchange, so we require standard protocols and syntaxes for general resource 
sharing.  

Why are protocols critical to interoperability?  A protocol definition specifies how distributed 
system elements interact with one another in order to achieve a specified behavior, and the 
structure of the information exchanged during this interaction.  This focus on externals 
(interactions) rather than internals (software, resource characteristics) has important pragmatic 
benefits.  VOs tend to be fluid; hence, the mechanisms used to discover resources, establish 
identity, determine authorization, and initiate sharing must be flexible and lightweight, so that 
resource-sharing arrangements can be established and changed quickly.  Because VOs 
complement rather than replace existing institutions, sharing mechanisms cannot require 
substantial changes to local policies and must allow individual institutions to maintain ultimate 
control over their own resources.   Since protocols govern the interaction between components, 
and not the implementation of the components, local control is preserved. 

Why are services important?  A service (see Appendix) is defined solely by the protocol that it 
speaks and the behaviors that it implements.  The definition of standard services—for access to 
computation, access to data, resource discovery, coscheduling, data replication, and so forth—
allows us to enhance the services offered to VO participants and also to abstract away resource-
specific details that would otherwise hinder the development of VO applications. 

Why do we also consider Application Programming Interfaces (APIs) and Software Development 
Kits (SDKs)?  There is, of course, more to VOs than interoperability, protocols, and services.  
Developers must be able to develop sophisticated applications in complex and dynamic execution 
environments.  Users must be able to operate these applications.  Application robustness, 
correctness, development costs, and maintenance costs are all important concerns.   Standard 
abstractions, APIs, and SDKs can accelerate code development, enable code sharing, and enhance 
application portability.  APIs and SDKs are an adjunct to, not an alternative to, protocols.  
Without standard protocols, interoperability can be achieved at the API level only by using a 
single implementation everywhere—infeasible in many interesting VOs—or by having every 
implementation know the details of every other implementation.  (The Jini approach [6] of 
downloading protocol code to a remote site does not circumvent this requirement.) 

In summary, our approach to Grid architecture emphasizes the identification and definition of 
protocols and services, first; and APIs and SDKs, second. 

4 Grid Architecture Description 
Our goal in describing our Grid architecture is not to provide a complete enumeration of all 
required protocols (and services, APIs, and SDKs) but rather to identify requirements for general 
classes of component.  The result is an extensible, open architectural structure within which can 
be placed solutions to key VO requirements.  Our architecture and the subsequent discussion 
organize components into layers, as shown in Figure 2.  Components within each layer share 
common characteristics but can build on capabilities and behaviors provided by any lower layer. 

In specifying the various layers of the Grid architecture, we follow the principles of the 
“hourglass model” [1].  The narrow neck of the hourglass defines a small set of core abstractions 
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and protocols (e.g., TCP and HTTP in the Internet), onto which many different high-level 
behaviors can be mapped (the top of the hourglass), and which themselves can be mapped onto 
many different underlying technologies (the base of the hourglass).   By definition, the number of 
protocols defined at the neck must be small.  In our architecture, the neck of the hourglass 
consists of Resource and Connectivity protocols, which facilitate the sharing of individual 
resources.   Protocols at these layers are designed so that they can be implemented on top of a 
diverse range of resource types, defined at the Fabric layer, and can in turn be used to construct a 
wide range of global services and application-specific behaviors at the Collective layer—so called 
because they involve the coordinated (“collective”) use of multiple resources. 

Our architectural description is high level and places few constraints on design and 
implementation.  To make this abstract discussion more concrete, we also list, for illustrative 
purposes, the protocols defined within the Globus Toolkit [33], and used within such Grid 
projects as the NSF’s National Technology Grid [59], NASA’s Information Power Grid [46], 
DOE’s DISCOM [10], GriPhyN (www.griphyn.org), NEESgrid (www.neesgrid.org), Particle 
Physics Data Grid (www.ppdg.net), and the European Data Grid (www.eu-datagrid.org).  More 
details will be provided in a subsequent paper.   
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Figure 2: The layered Grid architecture and its relationship to the Internet protocol architecture.   Because 
the Internet protocol architecture extends from network to application, there is a mapping from Grid layers 
into Internet layers.  

4.1 Fabric: Interfaces to Local Control 
The Grid Fabric layer provides the resources to which shared access is mediated by Grid 
protocols: for example, computational resources, storage systems, catalogs, network resources, 
and sensors.  A “resource” may be a logical entity, such as a distributed file system, computer 
cluster, or distributed computer pool; in such cases, a resource implementation may involve 
internal protocols (e.g., the NFS storage access protocol or a cluster resource management 
system’s process management protocol), but these are not the concern of Grid architecture. 

Fabric components implement the local, resource-specific operations that occur on specific 
resources (whether physical or logical) as a result of sharing operations at higher levels.  There is 
thus a tight and subtle interdependence between the functions implemented at the Fabric level, on 
the one hand, and the sharing operations supported, on the other.  Richer Fabric functionality 
enables more sophisticated sharing operations; at the same time, if we place few demands on 
Fabric elements, then deployment of Grid infrastructure is simplified.  For example, resource-
level support for advance reservations makes it possible for higher-level services to aggregate 
(coschedule) resources in interesting ways that would otherwise be impossible to achieve. 
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However, as in practice few resources support advance reservation “out of the box,” a 
requirement for advance reservation increases the cost of incorporating new resources into a Grid. 

Experience suggests that at a minimum, resources should implement enquiry mechanisms that 
permit discovery of their structure, state, and capabilities (e.g., whether they support advance 
reservation) on the one hand, and resource management mechanisms that provide some control of 
delivered quality of service, on the other.  The following brief and partial list provides a resource-
specific characterization of capabilities. 

• Computational resources: Mechanisms are required for starting programs and for 
monitoring and controlling the execution of the resulting processes.  Management 
mechanisms that allow control over the resources allocated to processes are useful, as are 
advance reservation mechanisms.  Enquiry functions are needed for determining 
hardware and software characteristics as well as relevant state information such as current 
load and queue state in the case of scheduler-managed resources. 

• Storage resources: Mechanisms are required for putting and getting files.  Third-party 
and high-performance (e.g., striped) transfers are useful [61].  So are mechanisms for 
reading and writing subsets of a file and/or executing remote data selection or reduction 
functions [14].  Management mechanisms that allow control over the resources allocated 
to data transfers (space, disk bandwidth, network bandwidth, CPU) are useful, as are 
advance reservation mechanisms.  Enquiry functions are needed for determining 
hardware and software characteristics as well as relevant load information such as 
available space and bandwidth utilization. 

• Network resources: Management mechanisms that provide control over the resources 
allocated to network transfers (e.g., prioritization, reservation) can be useful.  Enquiry 
functions should be provided to determine network characteristics and load. 

• Code repositories: This specialized form of storage resource requires mechanisms for 
managing versioned source and object code: for example, a control system such as CVS. 

• Catalogs: This specialized form of storage resource requires mechanisms for 
implementing catalog query and update operations: for example, a relational database [9]. 

Globus Toolkit:  The Globus Toolkit has been designed to use (primarily) existing fabric 
components, including vendor-supplied protocols and interfaces.  However, if a vendor does not 
provide the necessary Fabric-level behavior, the Globus Toolkit includes the missing 
functionality.  For example, enquiry software is provided for discovering structure and state 
information for various common resource types, such as computers (e.g., OS version, hardware 
configuration, load [30], scheduler queue status), storage systems (e.g., available space), and 
networks (e.g., current and predicted future load [52, 63]), and for packaging this information in a 
form that facilitates the implementation of higher-level protocols, specifically at the Resource 
layer.  Resource management, on the other hand, is generally assumed to be the domain of local 
resource managers.  One exception is the General-purpose Architecture for Reservation and 
Allocation (GARA) [36], which provides a “slot manager” that can be used to implement advance 
reservation for resources that do not support this capability.  Others have developed 
enhancements to the Portable Batch System (PBS) [56] and Condor [49, 50] that support advance 
reservation capabilities.  

4.2  Connectivity: Communicating Easily and Securely 
The Connectivity layer defines core communication and authentication protocols required for 
Grid-specific network transactions.  Communication protocols enable the exchange of data 
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between Fabric layer resources.  Authentication protocols build on communication services to 
provide cryptographically secure mechanisms for verifying the identity of users and resources. 

Communication requirements include transport, routing, and naming.  While alternatives 
certainly exist, we assume here that these protocols are drawn from the TCP/IP protocol stack: 
specifically, the Internet (IP and ICMP), transport (TCP, UDP), and application (DNS, OSPF, 
RSVP, etc.) layers of the Internet layered protocol architecture [7].  This is not to say that in the 
future, Grid communications will not demand new protocols that take into account particular 
types of network dynamics. 

With respect to security aspects of the Connectivity layer, we observe that the complexity of the 
security problem makes it important that any solutions be based on existing standards whenever 
possible.  As with communication, many of the security standards developed within the context of 
the Internet protocol suite are applicable.  

Authentication solutions for VO environments should have the following characteristics [17]: 

• Single sign on. Users must be able to “log on” (authenticate) just once and then have 
access to multiple Grid resources defined in the Fabric layer, without further user 
intervention. 

• Delegation [35, 40, 45]. A user must be able to endow a program with the ability to run 
on that user’s behalf, so that the program is able to access the resources on which the user 
is authorized.  The program should (optionally) also be able to conditionally delegate a 
subset of its rights to another program (sometimes referred to as restricted delegation). 

• Integration with various local security solutions: Each site or resource provider may 
employ any of a variety of local security solutions, including Kerberos and Unix security.  
Grid security solutions must be able to interoperate with these various local solutions.  
They cannot, realistically, require wholesale replacement of local security solutions but 
rather must allow mapping into the local environment. 

• User-based trust relationships: In order for a user to use resources from multiple 
providers together, the security system must not require each of the resource providers to 
cooperate or interact with each other in configuring the security environment.  For 
example, if a user has the right to use sites A and B, the user should be able to use sites A 
and B together without requiring that A’s and B’s security administrators interact. 

Grid security solutions should also provide flexible support for communication protection (e.g., 
control over the degree of protection, independent data unit protection for unreliable protocols, 
support for reliable transport protocols other than TCP) and enable stakeholder control over 
authorization decisions, including the ability to restrict the delegation of rights in various ways. 

Globus Toolkit: The Internet protocols listed above are used for communication.  The public-key 
based Grid Security Infrastructure (GSI) protocols [17, 35] are used for authentication, 
communication protection, and authorization.  GSI builds on and extends the Transport Layer 
Security (TLS) protocols [29] to address most of the issues listed above: in particular, single sign-
on, delegation, integration with various local security solutions (including Kerberos [58]), and 
user-based trust relationships.  X.509-format identity certificates are used.  Stakeholder control of 
authorization is supported via an authorization toolkit that allows resource owners to integrate 
local policies via a Generic Authorization and Access (GAA) control interface.  Rich support for 
restricted delegation is not provided in the current toolkit release (v1.1.4) but has been 
demonstrated in prototypes. 
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4.3  Resource: Sharing Single Resources 
The Resource layer builds on Connectivity layer communication and authentication protocols to 
define protocols (and APIs and SDKs) for the secure negotiation, initiation, monitoring, control, 
accounting, and payment of sharing operations on individual resources.  Resource layer 
implementations of these protocols call Fabric layer functions to access and control local 
resources.  Resource layer protocols are concerned entirely with individual resources and hence 
ignore issues of global state and atomic actions across distributed collections; such issues are the 
concern of the Collective layer discussed next.  

Two primary classes of Resource layer protocols can be distinguished:  

• Information protocols are used to obtain information about the structure and state of a 
resource, for example, its configuration, current load, and usage policy (e.g., cost). 

• Management protocols are used to negotiate access to a shared resource, specifying, for 
example, resource requirements (including advanced reservation and quality of service) 
and the operation(s) to be performed, such as process creation, or data access.  Since 
management protocols are responsible for instantiating sharing relationships, they must 
serve as a “policy application point,” ensuring that the requested protocol operations are 
consistent with the policy under which the resource is to be shared. Issues that must be 
considered include accounting and payment.  A protocol may also support monitoring the 
status of an operation and controlling (for example, terminating) the operation. 

While many such protocols can be imagined, the Resource (and Connectivity) protocol layers 
form the neck of our hourglass model, and as such should be limited to a small and focused set.  
These protocols must be chosen so as to capture the fundamental mechanisms of sharing across 
many different resource types (for example, different local resource management systems), while 
not overly constraining the types or performance of higher-level protocols that may be developed. 

The list of desirable Fabric functionality provided in Section 4.1 summarizes the major features 
required in Resource layer protocols.  To this list we add the need for “exactly once” semantics 
for many operations, with reliable error reporting indicating when operations fail. 

Globus Toolkit: A small and mostly standards-based set of protocols is adopted.  In particular: 

• A Grid Resource Information Protocol (GRIP, currently based on the Lightweight 
Directory Access Protocol: LDAP) is used to define a standard resource information 
protocol and associated information model.  An associated soft-state resource registration 
protocol, the Grid Resource Registration Protocol (GRRP), is used to register resources 
with Grid Index Information Servers, discussed in the next section [25]. 

• The HTTP-based Grid Resource Access and Management (GRAM) protocol is used for 
allocation of computational resources and for monitoring and control of computation on 
those resources [26].  

• An extended version of the File Transfer Protocol, GridFTP, is a management protocol 
for data access; extensions include use of Connectivity layer security protocols, partial 
file access, and management of parallelism for high-speed transfers [4].  FTP is adopted 
as a base data transfer protocol because of its support for third-party transfers and 
because its separate control and data channels facilitate the implementation of 
sophisticated servers. 

• LDAP is also used as a catalog access protocol. 

The Globus Toolkit defines client-side C and Java APIs and SDKs for each of these protocols.  
Server-side SDKs and servers are also provided for each protocol, to facilitate the integration of 
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various resources (computational, storage, network) into the Grid.  For example, the Grid 
Resource Information Service (GRIS) implements server-side LDAP functionality, with callouts 
allowing for publication of arbitrary resource information [25].  An important server-side element 
of the overall Toolkit is the “gatekeeper,” which provides what is in essence a GSI-authenticated 
“inetd” that speaks the GRAM protocol and can be used to dispatch various local operations.  The 
Generic Security Services (GSS) API [48] is used to acquire, forward, and verify authentication 
credentials and to provide transport layer integrity and privacy within these SDKs and servers, 
enabling substitution of alternative security services at the Connectivity layer. 

4.4  Collective: Coordinating Multiple Resources 
While the Resource layer is focused on interactions with a single resource, the next layer in the 
architecture contains protocols and services (and APIs and SDKs) that are not associated with any 
one specific resource but rather are global in nature and capture interactions across collections of 
resources.  For this reason, we refer to the next layer of the architecture as the Collective layer.  
Because Collective components build on the narrow Resource and Connectivity layer “neck” in 
the protocol hourglass, they can implement a wide variety of sharing behaviors without placing 
new requirements on the resources being shared.  For example: 

• Directory services allow VO participants to discover the existence and/or properties of 
VO resources.  A directory service may allow its users to query for resources by name 
and/or by attributes such as type, availability, or load [25].  Resource-level GRRP and 
GRIP protocols are used to construct directories. 

• Co-allocation, scheduling, and brokering services allow VO participants to request the 
allocation of one or more resources for a specific purpose and the scheduling of tasks on 
the appropriate resources.  Examples include AppLeS [12, 13], Condor-G [37], Nimrod-
G [2], and the DRM broker [10]. 

• Monitoring and diagnostics services support the monitoring of VO resources for failure, 
adversarial attack (“intrusion detection”), overload, and so forth. 

• Data replication services support the management of VO storage (and perhaps also 
network and computing) resources to maximize data access performance with respect to 
metrics such as response time, reliability, and cost [4, 44]. 

• Grid-enabled programming systems enable familiar programming models to be used in 
Grid environments, using various Grid services to address resource discovery, security, 
resource allocation, and other concerns.  Examples include Grid-enabled implementations 
of the Message Passing Interface [32, 38] and manager-worker frameworks [21, 41]. 

• Workload management systems and collaboration frameworks—also known as problem 
solving environments (“PSEs”)—provide for the description, use, and management of 
multi-step, asynchronous, multi-component workflows  

• Software discovery services discover and select the best software implementation and 
execution platform based on the parameters of the problem being solved [20].  Examples 
include NetSolve [19] and Ninf [54]. 

• Community authorization servers enforce community policies governing resource access, 
generating capabilities that community members can use to access community resources.  
These servers provide a global policy enforcement service by building on resource 
information, and resource management protocols (in the Resource layer) and security 
protocols in the Connectivity layer.  Akenti [60] addresses some of these issues. 
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• Community accounting and payment services gather resource usage information for the 
purpose of accounting, payment, and/or limiting of resource usage by community 
members. 

• Collaboratory services support the coordinated exchange of information within 
potentially large user communities, whether synchronously or asynchronously. Examples 
are CAVERNsoft [28, 47], Access Grid [23], and commodity groupware systems.  

These examples illustrate the wide variety of Collective layer protocols and services that are 
encountered in practice.  Notice that while Resource layer protocols must be general in nature and 
are widely deployed, Collective layer protocols span the spectrum from general purpose to highly 
application or domain specific, with the latter existing perhaps only within specific VOs. 

Collective functions can be implemented as persistent services, with associated protocols, or as 
SDKs (with associated APIs) designed to be linked with applications.  In both cases, their 
implementation can build on Resource layer (or other Collective layer) protocols and APIs.  For 
example, Figure 3 shows a Collective co-allocation API and SDK (the middle tier) that uses a 
Resource layer management protocol to manipulate underlying resources.  Above this, we define 
a co-reservation service protocol and implement a co-reservation service that speaks this protocol, 
calling the co-allocation API to implement co-allocation operations and perhaps providing 
additional functionality, such as authorization, fault tolerance, and logging.  An application might 
then use the co-reservation service protocol to request end-to-end network reservations. 
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Figure 3: Collective and Resource layer protocols, services, APIs, and SDKS can be combined in a variety 
of ways to deliver functionality to applications. 

Collective components may be tailored to the requirements of a specific user community, VO, or 
application domain, for example, an SDK that implements an application-specific coherency 
protocol, or a co-reservation service for a specific set of network resources.  Other Collective 
components can be more general-purpose, for example, a replication service that manages an 
international collection of storage systems for multiple communities, or a directory service 
designed to enable the discovery of VOs.  In general, the larger the target user community, the 
more important it is that a Collective component’s protocol(s) and API(s) be standards based. 

Globus Toolkit: In addition to the example services listed earlier in this section, many of which 
build on Globus Connectivity and Resource protocols, we mention the Meta Directory Service, 
which introduces Grid Information Index Servers (GIISs) to support arbitrary views on resource 
subsets, with the LDAP information protocol used to access resource-specific GRISs to obtain 
resource state and GRRP used for resource registration.  Also replica catalog and replica 
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management services used to support the management of dataset replicas in a Grid environment 
[4].  An online credential repository service (“MyProxy”) provides secure storage for proxy 
credentials [55].  The DUROC co-allocation library provides an SDK and API for resource co-
allocation [27]. 

4.5  Applications 
The final layer in our Grid architecture comprises the user applications that operate within a VO 
environment.  Figure 4 illustrates an application programmer’s view of Grid architecture.  
Applications are constructed in terms of, and by calling upon, services defined at any layer.  At 
each layer, we have well-defined protocols that provide access to some useful service: resource 
management, data access, resource discovery, and so forth.  At each layer, APIs may also be 
defined whose implementation (ideally provided by third-party SDKs) exchange protocol 
messages with the appropriate service(s) to perform desired actions. 

Applications

Fabric

Collective Services

Resource Services

Connectivity APIs

Collective APIs & SDKs

Resource APIs & SDKs

Collective Service   Protocols

Resource Service   Protocols

Connectivity   Protocols

Languages & Frameworks

API/SDK

Service

Key:

 

Figure 4: APIs are implemented by software development kits (SDKs), which in turn use Grid protocols to 
interact with network services that provide capabilities to the end user.  Higher level SDKs can provide 
functionality that is not directly mapped to a specific protocol, but may combine protocol operations with 
calls to additional APIs as well as implement local functionality.  Solid lines represent a direct call; dash 
lines protocol interactions. 

We emphasize that what we label “applications” and show in a single layer in Figure 4 may in 
practice call upon sophisticated frameworks and libraries (e.g., the Common Component 
Architecture [5], SciRun [20], CORBA [39, 51], Cactus [11], workflow systems [15]) and feature 
much internal structure that would, if captured in our figure, expand it out to many times its 
current size.  These frameworks may themselves define protocols, services, and/or APIs.  (E.g., 
the Simple Workflow Access Protocol [15].)  However, these issues are beyond the scope of this 
article, which addresses only the most fundamental protocols and services required in a Grid. 

5 Grid Architecture in Practice 
We use two examples to illustrate how Grid architecture functions in practice.  Table 1 shows the 
services that might be used to implement the multidisciplinary simulation and cycle sharing (ray 
tracing) applications introduced in Figure 1.  The basic Fabric elements are the same in each case: 
computers, storage systems, and networks.  Furthermore, each resource speaks standard 
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Connectivity protocols for communication and security, and Resource protocols for enquiry, 
allocation, and management.  Above this, each application uses a mix of generic and more 
application-specific Collective services. 

In the case of the ray tracing application, we assume that this is based on a high-throughput 
computing system [37, 50].  In order to manage the execution of large numbers of largely 
independent tasks in a VO environment, this system must keep track of the set of active and 
pending tasks, locate appropriate resources for each task, stage executables to those resources, 
detect and respond to various types of failure, and so forth.  An implementation in the context of 
our Grid architecture uses both domain-specific Collective services (dynamic checkpoint, task 
pool management, failover) and more generic Collective services (brokering, data replication for 
executables and common input files), as well as standard Resource and Connectivity protocols.  
Condor-G represents a first step towards this goal [37]. 

Table 1: The Grid services used to construct the two example applications of Figure 1. 

 Multidisciplinary Simulation Ray Tracing 

Collective 
(application-specific) 

Solver coupler, distributed data 
archiver 

Checkpointing, job management, 
failover, staging 

Collective (generic) Resource discovery, resource brokering, system monitoring, 
community authorization, certificate revocation 

Resource Access to computation; access to data; access to information about 
system structure, state, performance. 

Connectivity Communication (IP), service discovery (DNS), authentication, 
authorization, delegation 

Fabric Storage systems, computers, networks, code repositories, catalogs 

 

In the case of the multidisciplinary simulation application, the problems are quite different at the 
highest level.  Some application framework (e.g., CORBA, CCA) may be used to construct the 
application from its various components.  We also require mechanisms for discovering 
appropriate computational resources, for reserving time on those resources, for staging 
executables (perhaps), for providing access to remote storage, and so forth.  Again, a number of 
domain-specific Collective services will be used (e.g., solver coupler, distributed data archiver), 
but the basic underpinnings are the same as in the ray tracing example.    

6 “On the Grid”: The Need for Intergrid Protocols 
Our Grid architecture establishes requirements for the protocols and APIs that enable sharing of 
resources, services, and code.  It does not otherwise constrain the technologies that might be used 
to implement these protocols and APIs.  In fact, it is quite feasible to define multiple 
instantiations of key Grid architecture elements.  For example, we can construct both Kerberos- 
and PKI-based protocols at the Connectivity layer—and access these security mechanisms via the 
same API, thanks to GSS-API (see Appendix).  However, Grids constructed with these different 
protocols are not interoperable and cannot share essential services—at least not without gateways.  
For this reason, the long-term success of Grid computing requires that we select and achieve 
widespread deployment of one set of protocols at the Connectivity and Resource layers—and, to 
a lesser extent, at the Collective layer.  Much as the core Internet protocols enable different 
computer networks to interoperate and exchange information, these Intergrid protocols (as we 
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might call them) enable different organizations to interoperate and exchange or share resources.  
Resources that speak these protocols can be said to be “on the Grid.”  Standard APIs are also 
highly useful if Grid code is to be shared.  The identification of these Intergrid protocols and APIs 
is beyond the scope of this article, although the Globus Toolkit represents an approach that has 
had some success to date. 

7 Relationships with Other Technologies 
The concept of controlled, dynamic sharing within VOs is so fundamental that we might assume 
that Grid-like technologies must surely already be widely deployed.  In practice, however, while 
the need for these technologies is indeed widespread, in a wide variety of different areas we find 
only primitive and inadequate solutions to VO problems.  In brief, current distributed computing 
approaches do not provide a general resource-sharing framework that addresses VO requirements.  
Grid technologies distinguish themselves by providing this generic approach to resource sharing.  
This situation points to numerous opportunities for the application of Grid technologies. 

7.1 World Wide Web 
The ubiquity of Web technologies (i.e., IETF and W3C standard protocols—TCP/IP, HTTP, 
SOAP, etc.—and languages, such as HTML and XML) makes them attractive as a platform for 
constructing VO systems and applications.  However, while these technologies do an excellent 
job of supporting the browser-client-to-web-server interactions that are the foundation of today’s 
Web, they lack features required for the richer interaction models that occur in VOs.  For 
example, today’s Web browsers typically use TLS for authentication, but do not support single 
sign-on or delegation.   

Clear steps can be taken to integrate Grid and Web technologies.  For example, the single sign-on 
capabilities provided in the GSI extensions to TLS would, if integrated into Web browsers, allow 
for single sign-on to multiple Web servers.  GSI delegation capabilities would permit a browser 
client to delegate capabilities to a Web server so that the server could act on the client’s behalf.  
These capabilities, in turn, make it much easier to use Web technologies to build “VO Portals” 
that provide thin client interfaces to sophisticated VO applications.  WebOS addresses some of 
these issues [62]. 

7.2 Application and Storage Service Providers 
Application service providers, storage service providers, and similar hosting companies typically 
offer to outsource specific business and engineering applications (in the case of ASPs) and 
storage capabilities (in the case of SSPs).  A customer negotiates a service level agreement that 
defines access to a specific combination of hardware and software.  Security tends to be handled 
by using VPN technology to extend the customer’s intranet to encompass resources operated by 
the ASP or SSP on the customer’s behalf.  Other SSPs offer file-sharing services, in which case 
access is provided via HTTP, FTP, or WebDAV with user ids, passwords, and access control lists 
controlling access. 

From a VO perspective, these are low-level building-block technologies.  VPNs and static 
configurations make many VO sharing modalities hard to achieve.  For example, the use of VPNs 
means that it is typically impossible for an ASP application to access data located on storage 
managed by a separate SSP.  Similarly, dynamic reconfiguration of resources within a single ASP 
or SPP is challenging and, in fact, is rarely attempted.  The load sharing across providers that 
occurs on a routine basis in the electric power industry is unheard of in the hosting industry.  A 
basic problem is that a VPN is not a VO: it cannot extend dynamically to encompass other 
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resources and does not provide the remote resource provider with any control of when and 
whether to share its resources. 

The integration of Grid technologies into ASPs and SSPs can enable a much richer range of 
possibilities.  For example, standard Grid services and protocols can be used to achieve a 
decoupling of the hardware and software.  A customer could negotiate an SLA for particular 
hardware resources and then use Grid resource protocols to dynamically provision that hardware 
to run customer-specific applications.  Flexible delegation and access control mechanisms would 
allow a customer to grant an application running on an ASP computer direct, efficient, and 
securely access to data on SSP storage—and/or to couple resources from multiple ASPs and SSPs 
with their own resources, when required for more complex problems.  A single sign-on security 
infrastructure able to span multiple security domains dynamically is, realistically, required to 
support such scenarios.  Grid resource management and accounting/payment protocols that allow 
for dynamic provisioning and reservation of capabilities (e.g., amount of storage, transfer 
bandwidth, etc.) are also critical. 

7.3 Enterprise Computing Systems 
Enterprise development technologies such as CORBA, Enterprise Java Beans, Java 2 Enterprise 
Edition, and DCOM are all systems designed to enable the construction of distributed 
applications.  They provide standard resource interfaces, remote invocation mechanisms, and 
trading services for discovery and hence make it easy to share resources within a single 
organization.  However, these mechanisms address none of the specific VO requirements listed 
above.  Sharing arrangements are typically relatively static and restricted to occur within a single 
organization.  The primary form of interaction is client-server, rather than the coordinated use of 
multiple resources. 

These observations suggest that there should be a role for Grid technologies within enterprise 
computing.  For example, in the case of CORBA, we could construct an object request broker 
(ORB) that uses GSI mechanisms to address cross-organizational security issues.  We could 
implement a Portable Object Adaptor that speaks the Grid resource management protocol to 
access resources spread across a VO.  We could construct Grid-enabled Naming and Trading 
services that use Grid information service protocols to query information sources distributed 
across large VOs.  In each case, the use of Grid protocols provides enhanced capability (e.g., 
interdomain security) and enables interoperability with other (non-CORBA) clients.  Similar 
observations can be made about Java and Jini.  For example, Jini’s protocols and implementation 
are geared toward a small collection of devices.  A “Grid Jini” that employed Grid protocols and 
services would allow the use of Jini abstractions in a large-scale, multi-enterprise environment. 

7.4 Internet and Peer-to-Peer Computing 
Peer-to-peer computing (as implemented, for example, in the Napster, Gnutella, and Freenet [24] 
file sharing systems) and Internet computing (as implemented, for example by the SETI@home, 
Parabon, and Entropia systems) is an example of the more general (“beyond client-server”) 
sharing modalities and computational structures that we referred to in our characterization of 
VOs.  As such, they have much in common with Grid technologies. 

In practice, we find that the technical focus of work in these domains has not overlapped 
significantly to date.  One reason is that peer-to-peer and Internet computing developers have so 
far focused entirely on vertically integrated (“stovepipe”) solutions, rather than seeking to define 
common protocols that would allow for shared infrastructure and interoperability.  (This is, of 
course, a common characteristic of new market niches, in which participants still hope for a 
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monopoly.)  Another is that the forms of sharing targeted by various applications are quite 
limited, for example, file sharing with no access control, and computational sharing with a 
centralized server.   

As these applications become more sophisticated and the need for interoperability becomes 
clearer we will see a strong convergence of interests between peer-to-peer, Internet, and Grid 
computing [31].  For example, single sign-on, delegation, and authorization technologies become 
important when computational and data sharing services must interoperate, and the policies that 
govern access to individual resources become more complex. 

8 Other Perspectives on Grids 
The perspective on Grids and VOs presented in this article is of course not the only view that can 
be taken.  We summarize here—and critique—some alternative perspectives (given in italics).  

The Grid is a next-generation Internet.  “The Grid” is not an alternative to “the Internet”: it is 
rather a set of additional protocols and services that build on Internet protocols and services to 
support the creation and use of computation- and data-enriched environments.  Any resource that 
is “on the Grid” is also, by definition, “on the Net.” 

The Grid is a source of free cycles.  Grid computing does not imply unrestricted access to 
resources.  Grid computing is about controlled sharing.  Resource owners will typically want to 
enforce policies that constrain access according to group membership, ability to pay, and so forth.  
Hence, accounting is important, and a Grid architecture must incorporate resource and collective 
protocols for exchanging usage and cost information, as well as for exploiting this information 
when deciding whether to enable sharing. 

The Grid requires a distributed operating system.  In this view (e.g., see [42]), Grid software 
should define the operating system services to be installed on every participating system, with 
these services providing for the Grid what an operating system provides for a single computer: 
namely, transparency with respect to location, naming, security, and so forth.  Put another way, 
this perspective views the role of Grid software as defining a virtual machine.  However, we feel 
that this perspective is inconsistent with our primary goals of broad deployment and 
interoperability.  We argue that the appropriate model is rather the Internet Protocol suite, which 
provides largely orthogonal services that address the unique concerns that arise in networked 
environments.  The tremendous physical and administrative heterogeneities encountered in Grid 
environments means that the traditional transparencies are unobtainable; on the other hand, it 
does appear feasible to obtain agreement on standard protocols.  The architecture proposed here is 
deliberately open rather than perscriptive: it defines a compact and minimal set of protocols that a 
resource must speak to be “on the Grid”; beyond this, it seeks only to provide a framework within 
which many behaviors can be specified. 

The Grid requires new programming models.  Programming in Grid environments introduces 
challenges that are not encountered in sequential (or parallel) computers, such as multiple 
administrative domains, new failure modes, and large variations in performance. However, we 
argue that these are incidental, not central, issues and that the basic programming problem is not 
fundamentally different.  As in other contexts, abstraction and encapsulation can reduce 
complexity and improve reliability.  But, as in other contexts, it is desirable to allow a wide 
variety of higher-level abstractions to be constructed, rather than enforcing a particular approach.  
So, for example, a developer who believes that a universal distributed shared memory model can 
simplify Grid application development should implement this model in terms of Grid protocols, 
extending or replacing those protocols only if they prove inadequate for this purpose.  Similarly, a 
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developer who believes that all Grid resources should be presented to users as objects needs 
simply to implement an object-oriented “API” in terms of Grid protocols. 

The Grid makes high-performance computers superfluous.  The hundreds, thousands, or even 
millions of processors that may be accessible within a VO represent a significant source of 
computational power, if they can be harnessed in a useful fashion.  This does not imply, however, 
that traditional high-performance computers are obsolete.  Many problems require tightly coupled 
computers, with low latencies and high communication bandwidths; Grid computing may well 
increase, rather than reduce, demand for such systems by making access easier. 

9 Summary 
We have provided in this article a concise statement of the “Grid problem,” which we define as 
controlled and coordinated resource sharing and resource use in dynamic, scalable virtual 
organizations.  We have also presented both requirements and a framework for a Grid 
architecture, identifying the principal functions required to enable sharing within VOs and 
defining key relationships among these different functions.  Finally, we have discussed in some 
detail how Grid technologies relate to other important technologies. 

We hope that the vocabulary and structure introduced in this document will prove useful to the 
emerging Grid community, by improving understanding of our problem and providing a common 
language for describing solutions.  We also hope that our analysis will help establish connections 
among Grid developers and proponents of related technologies. 

The discussion in this paper also raises a number of important questions. What are appropriate 
choices for the Intergrid protocols that will enable interoperability among Grid systems?  What 
services should be present in a persistent fashion (rather than being duplicated by each 
application) to create usable Grids?  And what are the key APIs and SDKs that must be delivered 
to users in order to accelerate development and deployment of Grid applications?  We have our 
own opinions on these questions, but the answers clearly require further research. 
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Appendix: Definitions 
We define here four terms that are fundamental to the discussion in this article but are frequently 
misunderstood and misused, namely, protocol, service, SDK, and API. 
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Protocol.  A protocol is a set of rules that end points in a telecommunication system use when 
exchanging information.  For example: 

• The Internet Protocol (IP) defines an unreliable packet transfer protocol. 

• The Transmission Control Protocol (TCP) builds on IP to define a reliable data delivery 
protocol. 

• The Transport Layer Security (TLS) Protocol [29] defines a protocol to provide privacy 
and data integrity between two communicating applications. It is layered on top of a 
reliable transport protocol such as TCP.  

• The Lightweight Directory Access Protocol (LDAP) builds on TCP to define a query-
response protocol for querying the state of a remote database. 

An important property of protocols is that they admit to multiple implementations: two end points 
need only implement the same protocol to be able to communicate.  Standard protocols are thus 
fundamental to achieving interoperability in a distributed computing environment. 

A protocol definition also says little about the behavior of an entity that speaks the protocol.  For 
example, the FTP protocol definition indicates the format of the messages used to negotiate a file 
transfer but does not make clear how the receiving entity should manage its files. 

As the above examples indicate, protocols may be defined in terms of other protocols. 

Service.  A service is a network-enabled entity that provides a specific capability, for example, 
the ability to move files, create processes, or verify access rights.  A service is defined in terms of 
the protocol one uses to interact with it and the behavior expected in response to various protocol 
message exchanges (i.e., “service = protocol + behavior.”).  A service definition may permit a 
variety of implementations.  For example: 

• An FTP server speaks the File Transfer Protocol and supports remote read and write 
access to a collection of files.  One FTP server implementation may simply write to and 
read from the server’s local disk, while another may write to and read from a mass 
storage system, automatically compressing and uncompressing files in the process.  From 
a Fabric-level perspective, the behaviors of these two servers in response to a store 
request (or retrieve request) are very different.  From the perspective of a client of this 
service, however, the behaviors are indistinguishable; storing a file and then retrieving 
the same file will yield the same results regardless of which server implementation is 
used.   

• An LDAP server speaks the LDAP protocol and supports response to queries.  One 
LDAP server implementation may respond to queries using a database of information, 
while another may respond to queries by dynamically making SNMP calls to generate the 
necessary information on the fly. 

A service may or may not be persistent (i.e., always available), be able to detect and/or recover 
from certain errors; run with privileges, and/or have a distributed implementation for enhanced 
scalability.  If variants are possible, then discovery mechanisms that allow a client to determine 
the properties of a particular instantiation of a service are important. 

Note also that one can define different services that speak the same protocol.  For example, in the 
Globus Toolkit, both the replica catalog [4] and information service [25] use LDAP. 

API.  An Application Program Interface (API) defines a standard interface (e.g., set of subroutine 
calls, or objects and method invocations in the case of an object-oriented API) for invoking a 
specified set of functionality.  For example: 
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• The Generic Security Service (GSS) API [48] defines standard functions for verifying 
identify of communicating parties, encrypting messages, and so forth. 

• The Message Passing Interface API [43] defines standard interfaces, in several languages, 
to functions used to transfer data among processes in a parallel computing system. 

An API may define multiple language bindings or use an Interface Definition Language.  The 
language may be a conventional programming language such as C or Java, or it may be a shell 
interface.  In the latter case, the API refers to particular a definition of command line arguments 
to the program, the input and output of the program, and the exit status of the program.  An API 
normally will specify a standard behavior but can admit to multiple implementations.   

It is important to understand the relationship between APIs and protocols.  A protocol definition 
says nothing about the APIs that might be called from within a program to generate protocol 
messages.  A single protocol may have many APIs; a single API may have multiple 
implementations that target different protocols.  In brief, standard APIs enable portability; 
standard protocols enable interoperability.  For example, both public key and Kerberos bindings 
have been defined for the GSS-API [48].  Hence, a program that uses GSS-API calls for 
authentication operations can operate in either a public key or a Kerberos environment without 
change.  On the other hand, if we want a program to operate in a public key and a Kerberos 
environment at the same time, then we need a standard protocol that supports interoperability of 
these two environments.  See Figure 5. 

GSS-API

Kerberos PKIor
Kerberos PKI

Domain A Domain B

GSP

 
Figure 5: On the left, an API is used to develop applications that can target either Kerberos or PKI security 
mechanisms.  On the right, protocols (the Grid security protocols provided by the Globus Toolkit) are used 
to enable interoperability between Kerberos and PKI domains. 

SDK.  The term software development kit (SDK) denotes a set of code designed to be linked 
with, and invoked from within, an application program to provide specified functionality.  An 
SDK typically implements an API.  If an API admits to multiple implementations, then there will 
be multiple SDKs for that API.  Some SDKs provide access to services via a particular protocol. 
For example: 

• The OpenLDAP release includes an LDAP client SDK, which contains a library of 
functions that can be used from a C or C++ application to perform queries to an LDAP 
service. 

• JNDI is a Java SDK, which contains functions that can be used to perform queries to an 
LDAP service. 

• Different SDKs implement GSS-API using the TLS and Kerberos protocols, respectively. 

There may be multiple SDKs, for example from multiple vendors, which implement a particular 
protocol.  Further, for client-server oriented protocols, there may be separate client SDKs for use 
by applications that want to access a service, and server SDKs for use by service implementers 
that want to implement particular, customized service behaviors. 
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An SDK need not speak any protocol.  For example, an SDK that provides numerical functions 
may act entirely locally and not need to speak to any services to perform its operations. 
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